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1 Calculation of beamparamters

1.1 Gerneral parameters

The in the experiment used ring cavity consists out of three high reflective mirrors, like
shown in figure 1.1.

Figure 1.1: Schematic grafic of the ring cavity. The light gets transimitted into the ring cavity
through mirror 1, indicated by Ein. The beams path’s between mirror 1, 2 and 3
are named P1 P2. Throug all three mirrors light gets transmitted out of the cavity.

Mirror 1 is planar, mirror 2 and 3 have a radius of curvature of r = 5 cm. Total light
traveling length is L = P1 + P2/2 + P2/2 = 3.8 cm.

P1 and P2 form a right triangle, with it’s corner on mirror 1. Therefore is P1/2 = c =
L/(
√

2 + 2) and P2 = L/(
√

2 + 1).

It’s free spectral range is ν0 = c/L = 7.889 GHz, where c is the speed of light. The mirrors
do at the moment of the internship (January 2015) have reflectivities of R1 = 0.997
and R2,3 = 0.999. After one circulation in the cavity the electric lightfield is becuse of

tranmission losses damped by the factor rd =
√
R1R2

2. The finesse F gives a value for the
losses of a resonator, which can be calculated out of the damping factor rd over

F = π

√
rd

1− rd
. (1.1)

For the given reflectiveties the finesse is F = 12561. The higher the finesse, the slower the
lightfield in the cavity decayes. In a more developed state of the experiment the mirrors

1Source: ’Angewandte Optik und Laserphysik’, lecture of Prof. Claus Zimmerman, University Tübingen,
2013
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will be changed to one’s with higher reflectivities and a finesse of F ≈ 150000 will be
needed to reach.
Figure 1.2 shows the resonators groundmode with modulated sidebands to measure it’s
finesse.

Figure 1.2: Modulated side band’s to measure linewith and finesse. The diode lasers laser
diode current was modulated with fmod = 20 MHz. The resonators full linewidth is
therefore νFWHM = 4.92 MHz which corresponds to a finesse of F ≈ 1600.

1.2 Gaussian parameters of the ring cavity

A gaussian beam can be characterised with the confocal parameter z0. It’s value gives the
distance from the focal point of a gaussian beam to the point where the radius of cuvature
of the beams wavefronts is at it’s minimum, or the radius ω of the beam is ω =

√
2ω0,

where ω0 is the beams waist diameter.
z gives the position in a beam, relativ to the waist ω0. z and z0 are combined to the value
q = z + iz0.

2

The ray’s path throuh a optical system can be described with transfer matrices

M =

(
A B
C D

)
. (1.2)

Depending on the system the ray’s parameters are changed to

q2 =
Aq1 +B

Cq1 +D
, (1.3)

with the beams parameters q1 infront of a the optical system and q2 after it.

2Soruce: H. Kogelnik and T. Li, ”Laser Beams and Resonators,” Appl. Opt. 5, 1550-1567 (1966)
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Reflektion on a mirror with radius of curcvature R ist given by

MR =

(
1 0
− 2

R
1

)
(1.4)

and translation through space by distance d with

Md =

(
1 d
0 1

)
. (1.5)

If the ray circulates in the ring cavity, after getting reflected on the mirrors and traveling
the space between them, it needs to be projected on itself, expressed by q2 = q1 = q.
Equation 1.3 can then be solved for q, which yield’s

q =
A−D

2C
± i

2C

√
4− (A+D)2, (1.6)

by using the relation for the determinant AD − CB = 1. With equation 1.6 z0 can be
identified as

z0 =
1

2C

√
4− (A+D)2. (1.7)

z0 is now the confocal parameter of the resonator, depending on the path between the
mirror’s which is been looked at. Furthermore can the waist of each path be calculated
by

ω0 =

√
λz0
π
, (1.8)

with the wavelength λ of the incoming light.

We now parametrize the beam into the rightangular coordinates x- and y, wehre the
resonators plane (the triangle described by the resonaotrs mirrors, the horrizontal plane
if the resonaots triangle is parralel to optical table) is the x-coordinate and y the one
perpendicular to x.
The effective radius of curvature seen by a beam getting reflected on a spherical mirror
depends on it’s angel of incident onto the mirrors surface. If the angle of incidents on the
mirrors plane is α, then the effective radii are

Rx =
R

cos (α)
, (1.9)

and
Ry = R cos (α). (1.10)

For both mirror 2 and 3 the angle of incidence is α = 22.5°. Mirror 1 is planar, which
equals to an infinite radius of curfature and the matrix that represents reflection on it
becomes a identity matrix.
The resonators modes are because of this reason eliptical. x- and y-beam have to be
watched at independently.
Now it is possible to calculate all the resonaotrs parameters. Because of the symetrical
mirrors, the resonator has two beamwaists. One laying on mirror 1 and the second one
exactly between mirror 2 and 3.
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ω0/µm z0/cm
Path x y x y
P2 70.5 68.09 2.27 2.11
P1 64.24 60.36 1.88 1.66

Table 1.1: Table show’s beamwaist ω0 and confocal parameter z0 for path P2 between mirror 2
and 3 and for path P1 between mirror 3 and 1 and 1 and 2.

1.3 Modespectrum

The bevore calculated parameters are valid for the groundmode of the resonator. The
lights electric field has an infinite amount of independend pathes it can circulate on.
The solution for the differential equation that describes the allowed field distributions,
is given by the hermite polynomials. The modes are characterises by their order. m is
identivied as the modes order in x-direction, n as the modes order in y-direction. So each
mode is identified with a pair of nautral numbers (m,n).

1.3.1 Gouy-Phase

Each mode collects a slitely different phase when doing one circulation. There is the
geometrical phase kz, with the wavevektor k and the traveled distance z. And there is
the Gouy-Phase.3 The geometrical difference of a gaussian beam compared to an plain
wave leads to phase difference of a maximum of π. The Gouy-Phase of every mode is
calculated as

θ =
1

2

(
(1 + 2m) arctan (

z

z0,x
) + (1 + 2n) arctan (

z

z0,y
)

)
(1.11)

The toatal Gouy-Phase collected in the resonator is the summ of the Gouy-Phase of each
path.

θ = θP1 + θP2

=

(
(1 + 2m) arctan (

L/(
√

2 + 2)

z0,P1,x

) + (1 + 2n) arctan (
L/(
√

2 + 2)

z0,P1,y

)

)

+

(
(1 + 2m) arctan (

L/2(
√

2 + 1)

z0,P2,x

) + (1 + 2n) arctan (
L/2(

√
2 + 1)

z0,P2,y

)

)
(1.12)

1.3.2 Mirror’s π-shift

The lights electric field amplitude changes it’s algebraic sign when refleced on an optical
dense medium. If it gets reflected on an uneven number of mirrors, the resulting phaseshift

3Source: ’Angewandte Optik und Laserphysik’, lecture of Prof. Claus Zimmerman, University Tübingen,
2013
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is π. Only horizontal modes of uneven order are affected4. This geometric phaseshift can
be expressed by

ϕgeom =
π

2
(1− (−1)m). (1.13)

1.3.3 Resonace frequencies

Total phase after one circulation is then

ϕ = −kL+ θ(z) + ϕgeom = 2πq, (1.14)

with the total length L of the resonator. Because we are looking for the case of constructive
interference, the total phase needs to be equal to 2πq, with q ∈ Z. Because of k = 2π/λ
and c = νλ, equation 1.14 can be solved for the resonance frequency ν of the resonaotors
modes

νq,m,n =
c

2πL
(θ + ϕgeom − 2πq). (1.15)

4Hermite polynomes of uneven order are antisymmetric.
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Figure 1.3: Calculated spectrum of resonators modes. The pair of numbers in the bracket show
the modes orders. The number under the bracket show the like in eqaution 1.15
calculated modes frequency.
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1.3.4 s- and p-polarisation

The plane of incident onto the mirrors surface is the resonators triangle, or in this case
the laboratories optic table. Linear polarised light perpendicular to the plane of incidence
is called s-polarised5. It’s electric field amplitude vector is parallel to the mirrors plane.
p-polarised lights electric field amplitude is parallel to the plane of incidence.
The mirrors dielectric layers are designed, so that p-polarised light has a much higher
reflectivity than s-polarised. Therefor by p-polarised light exited resonator modes are
called high finesse modes. The ones exited by s-polarised light are called low-finesse
modes.
Because the electric field of p-polarised light is changing it’s algebraic sign at every reflec-
tion, it’s total phase difference after one circulation relative to s-polarised light, of which
the field’s amplitude is not changing it’s algebraic sign at reflection, is then π.
Meaning, that high-finesse modes are shifted by half a free spectral range relative to the
low finesse modes.

5’s’ from the german ’senkrecht’ (perpendicular)



2 Measuring the mode spectrum

In the experiment a diode laser with λ = 689nm is used.1 Used optical layout is shown
in figure 2.1. The setup was also used to optain a Pound-Drever-Hall lock signal.
The diode laser showed the tendency to lose it’s lasing threshold after a couple of days, and
had to be readjusted. This was noticable by a increasing frequency stabilety. The reflected
intensity dips of the resonator’s modes showed more and more noise. Also the current
interval of the lasers diode current, in which it was operating in single mode decreasing
fast. The thresholds readjustment could be done quite fast using the fine-thread screw of
the diode lasers optical grid.

Figure 2.1: Optical scheme that was used. The two light sources could be used independently,
a selfe made diode laser ore over the fiber an Toptica DL Pro. To prefent reflections
back into the laser diode, a faraday isolator was put directly after the diode laser’s
output. Lens L1 is the first beam correction lense. Polcube S1 was used bring both
lightsources into the same path. With λ/2-Plate after S1 s- and p-polarisation can
be selected. A webcam was used to make pictures of the resonators modes, which
have been projected onto an screen. Photodiode’s PD1 and PD2 are used the
monitor the reflected beam and to optain a Pound-Drever-Hall lock signal. L2 is
the second mode matching lens, to fit the resonators modes.

Figure 2.3-2.5 show several horizontal and vertical modes with their measured frequency.
The normalised reflected intensity is plotted over the resonators frequency over more then
one free spectral range. The shown frequencies values are not verry accurate and should
only be considered as a first look. The intensity was measured with an oszilloskope in
timedomain. The horizontal time-axis was simply rescaled, takeing the distance between

1”Creation of a narrow linewidth, high passive stability laser for use in an ultra-cold strontium experi-
ment”, R. del Aguila, Internship report
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the two (0, 0)-groundmodes as reference for one free spectral range ν0 = 7.889 GHz. Non-
linear piezo elongation and voltage have not been taken account of.

A mode matching efficiency of up to 80% could be reached, but was mostly around 70%,
see figure 2.2.

All the shown pictures show the high-finesse modes (p-polarisation). The low finesse
spectrum is expected to look the same and beeing shifted by a half free spectral length
relative to the high finesse modes.

Figure 2.2: Of ring resonator reflected intensity, while scaning over the resonaotors mode with
a piezo.

If the measured mode frequencies in figure 2.3-2.5 and the calculated in figure 1.3 are
compared, one can see that most values fit quite well. Differences from up to 0.5 GHz
apear, which is around 6.4% of one free specrtal range.
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Figure 2.3: Horizontal axis shows the resonators frequency. Vertical axis is the normalised
reflected resonaotrs intensity. Only horizontal modes are excited. The numbers in
the bracket show the modes order (m,n). The number under the bracket is the
measured frequency of the mode in GHz.

Figure 2.4: Horizontal axis shows the resonators frequency. Vertical axis is the normalised
reflected resonaotrs intensity. Mostly vertical modes are excited.
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Figure 2.5: Horizontal axis shows the resonators frequency. Vertical axis is the normalised
reflected resonaotrs intensity. Mostly higher modes of poth directions are excited.

2.1 Pound-Drever-Hall signal

A pound drever hall lock signal could be generated.23 The laser diodes current was mod-
ulated with Vmod = 310 mV and a modulation frequency of fmod = 25 MHz. The photo
diode’s (figure 2.1) signal was mixed with the modulation frequency with an amplitude
Vmix = 410 mV. The laser diodes current was at ILD = 60.1 mA. The phase difference
between modulation and reference signal has been ϕ = 140°. Figure 2.6 shows the gener-
ated PDH-signal. The reason for it’s asymetric shape could be a second higher mode that
lays at near to the groundmode. The picture of the groundmode for example in figure 2.3
shows the 34-mode together with the groundmode.

2Source: ”Pound-Drever-Hall locking of an optical cavity for use in an Ultra-Cold Strontium Experi-
ment”, Faizah Rafique, Internship report

3Source: ”An introduction to Pound–Drever–Hall laser frequency stabilization”, Eric D. Black, Am. J.
Phys. 69, 79 (2001)
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Figure 2.6: Measured Poun-Drever-Hall signal of the high finesse 00-Groundmode. The asyme-
tries offspring is possebly the low finesse 34-Mode laying next to high finesse ground-
mode.


